Optical Random Access Memory based on Active-MMI BLDs

Haisong Jiang, Takuma Hagio, Yutaka Chaen, Makoto Jizoudou and Kiichi Hamamoto

Current internet routers consume huge amount of electrical power due to OE (optical to electrical) and EO (electrical to optical) signal exchanges. This leads to the necessity to develop all-optical routers that could result in energy conservation. Optical random access memory (RAM) is a key device for realizing such that all-optical routers especially for the buffering function. We have proposed and demonstrated wide hysteresis window bi-stable laser diodes (BLDs) based on active multimode interferometer (MMI) utilizing different lateral modes leads to wide hysteresis, which allows common single-current driving for the integrated devices [1]~[4]. Figure 1 shows the schematics of active-MMI BLDs. In this design, bi-stability characteristics depend mainly on the cross-gain saturation between fundamental and first-order modes [1]. This schema offers superior controllability in the portion of cross-gain saturation region, which leads to wide hysteresis window that allows common single-current driving for the integrated devices. By using this principle, we have realized low hysteresis threshold current (39mA), with maintaining sufficient hysteresis window (7mA, 18% of the hysteresis threshold) in the cavity length of only 305μm (see Fig. 2) [2], and demonstrated relatively low common operation current for 4-bit memory elements in a single chip (see Fig. 4) [3]. Moreover, we also obtained extremely wide hysteresis window extremely of 94mA utilizing MMI region partly as saturable absorber (SA) (see Fig. 3) [4].

Fig. 1. Schematics of active-MMI BLDs (circle indicates cross-gain saturation region).

Fig. 2. Hysteresis characteristics of fabricated devices.

Fig. 3. Hysteresis characteristics utilizing MMI region partly as SA.

Fig. 4. (a) Microscopic top photograph of integrated 4-bit optical memory elements and (b) the hysteresis characteristics for the 4-bit optical memory elements.

References